Tibetan Text Clustering Based on Machine Learning
نویسندگان
چکیده
Tibetan information processing technology has been obtained some achievements. But it falls behind Chinese and English information processing. It still needs to be paid more attention. Text clustering has the potential to accelerate the development of Tibetan information processing. In this paper, we propose an approach of Tibetan text clustering based on machine learning. Firstly, the approach is to execute Tibetan word segmentation with Tibetan texts. Then feature selection and text representation are conducted. Finally, K-means and DBSCAN are adopted to deal with the text clustering. The experimental results present that DBSCAN has better performance for Tibetan text clustering. Text clustering systems are designed based on proposed approach. The study is meaningful for the Tibetan text classification, information retrieval as well as construction of high-quality Tibetan corpus. Subject Categories and Descriptors I.5.3 [Clustering]: Algorithm; I.7 [Document and Text Processing] General Terms: Information Clustering, Knowledge Management
منابع مشابه
Clustering Research across Tibetan and Chinese Texts
Tibetan text clustering has potential in Tibetan information processing domain. In this paper, clustering research across Chinese and Tibetan texts is proposed to benefit Chinese and Tibetan machine translation and sentence alignment. A Tibetan and Chinese keyword table is the main way to implement the text clustering across these two languages. Improved Kmeans and improved density-based spatia...
متن کاملارتقای کیفیت دستهبندی متون با استفاده از کمیته دستهبند دو سطحی
Nowadays, the automated text classification has witnessed special importance due to the increasing availability of documents in digital form and ensuing need to organize them. Although this problem is in the Information Retrieval (IR) field, the dominant approach is based on machine learning techniques. Approaches based on classifier committees have shown a better performance than the others. I...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JDIM
دوره 12 شماره
صفحات -
تاریخ انتشار 2014